sábado, 29 de junio de 2013

actividades extra




actividades del libro


triangulo isósceles  actividad 


Lectura de Enseñanza de la topología y geometría en los niveles elementales

ENSEÑANZA DE LA TOPOLOGÍA Y GEOMETRÍA EN LOS NIVELES ELEMENTALES
VlDAL COSTA, E., DE LA TORRE FERNANDEZ, E.

a) Contenidos:
En cuanto a los contenidos que deben enseñarse en la Matemática elemental nos encontramos, aunque parezca paradógico, con una parte moderna de la matemática, la Topología, la cual «según algunos)) (Piaget e Inhelder 1956, Sauvy 1972) es el punto de arranque.
Para superar la etapa imaginativa como base del pensamiento representativo y poder construir y transformar figuras espaciales, necesita manejar objetos, cuyo uso continuado conduce al descubrimiento de relaciones y éstas, posteriormente, se hacen leyes de Geometria.
Según Piaget-Inhelder (1956), aproximadamente a partir de los 6 años los conceptos topológicos van transformándose lentamente en conceptos proyectivos y euclideos.
Análogamente Darke (1 982) afirma que estos experimentos de Piaget conducentes a probar su tesis de la primacia topológica están a menudo complicados por factores no conceptuales, y los conceptos de espacio en el niño son afectados por factores como el lenguaje, situación social, escuela, etc. Y termina diciendo, lo mismo que Kapadia (1974), que parece imprudente concluir de los experimentos de Piaget la necesidad de enseñar los conceptos topológicos en los primeros niveles, como proponen J. y S. Sauvy (1972
b) Didáctica:
En los niveles elementales, la mejor forma de aproximarse a la Matemática consiste en hacer, construir y descubrir sobre la experiencia. Esto conducirá de lo particular a lo general (Dienes, 1970).
En el parvulario, la enseñanza debe dedicarse mucho a la formación de capacidades e iniciación de conceptos que a la adquisición de hechos.
1.       PARA DESARROLLAR CONCEPTOS TOPOLÓGICOS:

Las primeras representaciones del espacio que el niño se va a formar van a partir de las percepciones elementales correspondientes a las relaciones de proximidad, separación, orden, contorno y continuidad.
A partir de los 6 o de los 7 años se alcanza gradualmente la construcción del orden inverso por ensayo-error.
Se pueden realizar ejercicios de tipo topológico de dificultad muy diferente. En particular los grafos ofrecen un buen ejemplo de esto. Podemos comenzar con caminos sencillos e ir complicándolo con esquemas cartograficos, tablas de doble entrada, etc.
2. PARA DESARROLLAR CONCEPTOS PROYECTIVOS:
En el libro de Dienes y Golding (1967) encontramos una serie de fichas de trabajo en relación con lo que llaman ((geometría de las sombras)).
Alrededor de los 8 años, el agrupamiento de relaciones es aún incompleto y estas se construyen parcialmente y por separadas, una tras otra. A los 9 o 10 años el niño puede elaborar una especie de esquema operacional completo de la estructura, a partir del cuál puede construir otros puntos de vista.
En cuanto a adivinar la forma que tendrán las diferentes secciones de un sólido, los primeros aciertos los tendremos en niños de 5 a 7 años y con figuras sencillas (cilindro, esfera); a esta edad hay confusión de puntos de vista, pues la abstracción formal que se requiere para ello exige una actividad mental mucho mayor que la abstracción de formas sencillas por medio del tacto.
3. PARA DESARROLLAR CONCEPTOS
EUCLIDEOS:

Podemos decir que una propiedad euclidea es aquella que permanece invariante al proyectar una figura plana, mediante un haz de rayos paralelos, sobre un plano paralelo al plano de la figura.

lectura de los procesos de los niños en la adquisición de las nociones matemáticas básicas en el preescolar.

LOS PROCESOS DE LOS NIÑOS EN LA ADQUISICIÓN DE LAS NOCIONES MATEMÁTICAS BÁSICAS EN  EL PREESCOLAR.
(González, Adriana y Edith Weinstein)

Los trabajos de Piaget son una gran contribución para comprender el proceso de desarrollo de las nociones de medida en el niño. Estos estudios consideran que los principios de conservación y de transitividad están ligados a la noción de medida.
la “longitud” y el “peso” son invariantes no se modifican aunque cambien otros aspectos de la situación.
A) COMPARACIONES PERCEPTIVAS
Se caracterizan por la ausencia de instrumento de medición, pues los niños, al medir usan única mente estimaciones de tipo visual.
B) DESPLAZAMIENTO DE OBJETOS
Es en esta etapa en la cual el niño comienza a desplazar los objetos a fin de compararlos, y a darse cuenta, también, de que puede utilizar algún elemento intermedio como instrumento de medición.
C) INICIO DE LA CONSERVACIÓN Y TRANSITIVIDAD
El niño al llegar a este momento ha logrado la utilización de elementos intermedios. El logro de la actual etapa se centra en decidir cuál es el elemento intermedio más conveniente.
D) CONSTITUCIÓN DE LA UNIDAD
En esta etapa se obtiene como resultado de la medida un número que representa la cantidad de veces en que la unidad elegida se desplaza en el objeto a medir, cubriéndolo en su totalidad.
La medida en la sala
Tradicionalmente la medida no se incluyó en forma intencional como un contenido a ser enseñado en el Nivel inicial. Se trabajaban sistemáticamente nociones relacionadas con distancia, longitud, peso, etc.
El actual enfoque propone un trabajo intencional de la medida, ya desde el jardín pues reconoce que el niño, desde los primeros años de vida, se conecta con situaciones de medida en forma cotidiana.
Los conocimientos intuitivos que el niño trae al jardín, en relación con la medida, deben ser el punto de partida de las situaciones problemáticas que el docente plantee
A fin de favorecer en el niño la construcción de la noción de medida, es importante proponer situaciones didácticas que permitan la exploración, la experimentación, la observación y la estimación.
En síntesis, un trabajo intencional de la medida en la sala, supone un docente que:
· Conozca los contenidos a enseñar.
· Plantee situaciones en las que medir sea una herramienta útil para solucionar problemas.
· Considere el medio como fuente de situaciones problemáticas.
· Utilice materiales variados y adecuados.
· Favorezca el descubrimiento.
· Permita la exploración.
· Valore el error como paso necesario en la construcción.
· Estimule la reflexión.
· Fomente las discusiones en grupo.

Desde el punto de vista físico masa y peso son magnitudes diferentes. La masa es una magnitud escalar, para expresarla basta un número, mientras que el peso es una fuerza, la fuerza con que la tierra atrae a un objeto y por lo tanto una magnitud vectorial. Para su designación es necesario un número, una dirección y un sentido.
Es importante que el niño del nivel conozca diferentes tipos de balanzas, así como el uso social que se hace de cada una de ellas.
Capacidad:
 La unidad de las medidas de capacidad es el litro.
Matemáticamente hablando la capacidad consiste en “la facultad de los envases huecos para alojar algo, sea líquido o sólido continuo, por ejemplo, arena”. Por lo tanto la capacidad de un recipiente es el volumen de líquido o de sólido que puede contener.
TIEMPO:
Las dificultades expresadas se deben a que la magnitud tiempo no puede ser observada directamente como propiedad de los objetos, sino que para apreciarla debemos valernos de instrumentos de medida convencionales a no convencionales.
El docente debe proporcionar al niño la posibilidad de conocer los diferentes relojes de uso social, como ser: de arena, digitales, de agujas, y debe ser consciente de la dificultad de su comprensión.
Para trabajar intencionalmente la medición del tiempo en la sala, el docente deberá presentar entre otras, situaciones que impliquen que los niños:
· Comparen duraciones de canciones, sonidos, acciones, que se realizan simultáneamente o no.
· Observen distintos tipos de relojes.
· Ordenen canciones, sonidos, acciones, etc., teniendo en cuenta su duración.
· Estimen la duración de canciones, sonidos, acciones y luego verifiquen lo anticipado.
· Utilicen calendarios, almanaques, etc., para medir el tiempo transcurrido.
· Establezcan el orden de las actividades en la jornada diana.
REGISTRO DE CANTIDADES

las cantidades continuas se miden y para medir necesitamos seleccionar una unidad y contar las veces en que ésta está incluida en el objeto a medir. Por lo tanto, al registrar necesitamos indicar un número y una unidad

evidencia de la lectura : El desarrollo de la noción de espacio en el niño de educación inicial

EL DESARROLLO DE LA NOCIÓN DE ESPACIO EN EL NIÑO DE EDUCACIÓN INICIAL
(Jeannett Castro Bustamante)

Desde este referente, la Educación Inicial ...«es aquella que busca garantizar el desarrollo integral infantil…bajo la concepción del niño y la  niña como seres sociales, integrantes de una familia y una comunidad, que posee características personales, sociales, culturales y lingüísticas particulares, que aprenden en un proceso constructivo y relacional con su medio»
Se hace indispensable que los docentes, particularmente los que atienden los primeros niveles de educación, conozcan los principios que definen los tres tipos de espacios que se derivan correspondientemente de tres tipos de Geometría y que explican las relaciones espaciales, a fin de poseer los fundamentos epistemológicos que le permitan la selección adecuada de estrategias de enseñanza y aprendizaje orientadas al desarrollo de la capacidad de ubicación en el espacio
ESPACIO EUCLIDIANO:
nos lleva, en primera instancia, a la época de los griegos y a su afán por establecer un sistema de demostración y razonamiento fundamentado en la «deducción» y en la «formalidad» de pensamiento.
ESPACIO PROYECTIVO
El espacio proyectivo comprende la representación de transformaciones en las cuales, a diferencia de lo que ocurre en las de tipo euclidiano, las longitudes y los ángulos experimentan cambios que dependen de la posición relativa entre el objeto representado y la fuente que lo plasma.
Con este tipo de representación, se busca que el objeto representado sea lo más parecido posible al objeto real; no obstante, su proyección es relativa.
ESPACIO TOPOLÓGICO
En este tipo de representación, las transformaciones sufridas por una figura original son tan profundas y generales que alteran los ángulos, las longitudes, las rectas, las áreas, los volúmenes, los puntos, las proporciones; no obstante, a pesar de ello algunas relaciones o propiedades geométricas permanecen invariables.
las relaciones espaciales que determinan la proximidad o acercamiento, la separación o alejamiento entre puntos y/o regiones, la condición de cierre de un contorno, la secuencia, continuidad o discontinuidad de líneas, superficies o volúmenes constituyen propiedades geométricas que se conservan en una transformación de carácter Topológico.
LA NOCIÓN DE ESPACIO  EN EL NIÑO
La estructuración de la noción de espacio, aun cuando está presente desde el nacimiento, cobra fuerza en la medida en que el niño/niña progresa en la posibilidad de desplazarse y de coordinar sus acciones (espacio concreto), e incorpora el espacio circundante a estas acciones como una propiedad de las mismas.
Tradicionalmente, se ha hecho énfasis en la enseñanza de la Geometría Euclidiana, es decir en el espacio de longitudes, líneas, distancias, áreas, medidas y volúmenes y se descuidan los otros dos aspectos del «espacio total »: el topológico y el proyectivo.
De acuerdo con Piaget la noción de espacio se construye paulatinamente siguiendo el orden que parte de las experiencias: Topológicas, Proyectivas y Euclidianas, contrario al orden en que históricamente fueron formalizadas las respectivas geometrías.
En una primera etapa, el espacio del niño/niña se reduce a las posibilidades que le brinda su capacidad motriz; de allí que la noción correspondiente, se denomina «espacio perceptual» y tiene durante largo tiempo, al cuerpo como centro principal de referencia.
Aproximadamente a partir de los dos años, las relaciones espaciales más sencillas se expresan mediante palabras como: arriba, abajo, encima, debajo, más arriba, más abajo, delante, detrás; dichas expresiones contribuyen grandemente a alcanzar las nociones espaciales.
En esta etapa el niño no puede distinguir un círculo de un cuadrado porque ambas son figuras cerradas, pero si las puede diferenciar de la figura de una herradura. Posteriormente logra distinguir líneas curvas de rectas y figuras largas de cortas, así como también diferenciar el espacio interior y exterior de una frontera dada o determinar posiciones relativas al interior de un orden lineal.
la capacidad de representación del niño; esta condición juega un papel importante en el proceso de construcción del conocimiento matemático, pues las relaciones aritméticas y espaciales ...«tratan sobre objetos, eventos, acciones y de las relaciones entre ellos, de tal manera que el conocimiento matemático es una representación simbólica de los mismos»
De tal manera que en esta etapa se va desarrollando en el niño/niña la capacidad de hacer representaciones mentales de las relaciones espaciales que se establecen entre los objetos y su propio cuerpo;
el niño refleja la capacidad de representación de las relaciones espaciales derivadas del desplazamiento, tanto de su propio cuerpo, como de los objetos, y entre los objetos con los que tiene contacto.
los docentes del nivel preescolar o de educación inicial deben tener presente, que, adicionalmente a los aspectos descritos, el lenguaje y los distintos tipos y códigos de representación, que de manera gradual va manejando el niño, median entre las experiencias y su representación.
Alrededor de los seis años aproximadamente, etapa en la que el niño/niña se incorpora al segundo nivel de escolaridad formal, los conceptos topológicos comienzan a transformarse en conceptos proyectivos.
le permite establecer la representación de su espacio circundante en la que los ejes adelante-atrás, izquierda-derecha dejan de ser absolutos; es decir, van siendo coordinados en la medida en que se efectúan operaciones mentales que permiten al niño/niña ver los objetos desde otro punto de vista.
Paralelamente a los conceptos proyectivos, los conceptos topológicos se transforman también en conceptos Euclidianos, lo que equivale a decir que el niño comienza a percibir los objetos de su espacio exterior no como algo estático, sino como objetos móviles;
la base del conocimiento Matemático según Piaget, se encuentra en el proceso reflexivo que el niño hace cuando acciona sobre los objetos de su entorno. En este sentido, distingue las operaciones lógicas, que surgen de la manipulación de objetos discretos (clases y relaciones) y las operaciones infralógicas cuyo punto de partida, son las partes de un todo continuo (objeto o infraclase).

a  partir de los 9 años de edad; y ya a los once años, puede dibujar correctamente el desarrollo de un cubo así como también operar mentalmente con figuras.

conclusión de las actividades aplicadas a los niños

A continuación se mostrara una conclusión muy general de nuestras experiencias en cada una de las actividades aplicada a los niños de seguimiento a lo largo del semestre

CONCLUSIÓN
 DE LAS ACTIVIDADES  APLICADAS A LOS NIÑOS DE SEGUIMIENTO
A lo largo  del semestre se trabajó con los niños de seguimiento lo cual consiste en que a 3 niños de  edad preescolar se le ponían una serie de actividades  con la finalidad  de desarrollar en ellos conocimientos  en cuanto al aspecto de forma, espacio y medida, trabajar con los niños de seguimiento fue una experiencia muy significativa ya que  el semestre paso nos enfocábamos más que nada en comprobar lo que era la teoría pero este semestre  nos preocupamos por el que niño aprendiera por lo que ya te daba un poco más de responsabilidad, tenías que poner más empeño a la realización de secuencia se llevó un proceso ya que si nos saltábamos algún paso podría afectar  al aprendizaje del niño, de igual manera si no seleccionábamos el material adecuado ,primero se empezó con lo que es “forma” aquí podemos decir que   este se trabajó  con mayor dedicación ya que  fue mayor el tiempo  para las actividades, en cuanto a nuestra experiencia con Emily  la niña de 6 años se puede decir que fue muy grata ya que todas las actividades fueron realizadas con éxito, puesto que si se lograran los aprendizajes esperados, era muy emotivo y complaciente cuando por medio de cuestionamiento al final de la actividad se podía comprobar que la niña había  aprendido y a un más cuando ella lo lograba relacionar en su entorno por si sola, esto se puede observar en lo que dice Jaime, A Gutiérrez. A (1990) en una propuesta de fundamentación para la enseñanza de la geometría: El modelo de van hiele.
“Puede decirse que alguien ha alcanzado un nivel superior de pensamiento cuando un nuevo orden de pensamiento le permite, con respecto a ciertas operaciones, aplicar estas operaciones a nuevos objetos. El alcance del nuevo nivel no se puede conseguir por enseñanza pero. A un así, mediante una adecuada elección de ejercicios, el profesor puede crear una situación favorable para que el alumno alcance nivel superior de pensamiento”.
En cuanto a las otras niñas  con las cuales siempre trabajamos juntas debido a que  se encontraban en el mismo nivel de aprendizaje  con ellas podemos decir que y aunque no me deje muy satisfecha que  la que aprendió más  o desarrollo  más conocimientos fue Roxana de  4 años de edad que citlaly de 5 años  debido a que Roxana  se le podría cuestionar  en eso momento y contestaba correctamente, también se le preguntaba en cada una de las actividades los conceptos o el tema visto en la actividad anterior y si lograba contestar, pero con citlaly solo si se le preguntaba en ese rato contestaba pero en las actividades posteriores   ya no recordaba nada por lo que podemos concluir que no tenía un aprendizaje significativo  una de las cosas que yo considero que pudo influir fue que citlaly era más penosa y un poco apática a las actividades y por lo tanto a la hora de trabajar, por lo contrario Roxana era más amigable y siempre estaba dispuesta a hacer las actividades, era cooperativa y le entusiasmaban mucho .  

En cuanto a  lo que es medida  como ya se mencionaba fue muy poco el tiempo que se trabajó  pero , aquí nos ocupamos de  introducir a las niñas más pequeñas a la estimación ya que como lo dice GONZÁLEZ, Adriana y Edith Weinstein (2000) en  “La medida y sus magnitudes”, “Se caracterizan por la ausencia de instrumento de medición, pues los niños, al medir usan únicamente estimaciones de tipo visual.”  Después nos ´pasamos a las medidas no convencionales ya que  como lo dice Sperry Smith: “Los niños pequeños descubren las propiedades del sistema formal de medición al utilizar unidades informales o arbitrarias. Estas unidades pueden ser unidades corporales: huellas dactilares, manos, pies o el largo de sus brazos.” Luego se  trasladaran  a lo que son las convencionales y con la grande se empezaron a trabajar con las longitudes, respecto a las actividades de medida  también las experiencias fueron significativas ya que  trabajar con citlaly cada vez se dificultaba más  por que  incluirla a las actividades  era más complicada debido a que cada vez era menos cooperativa se enojaba y se portaba  un poco grosera, insistíamos un poco y después de un  tiempo  al ver que no quería, no la forzábamos a hacer las actividades la dejábamos un rato y tratábamos que Roxana se divirtiera mucho  al hacer la actividad   para después ir a ver a citlaly    ya cuando ella estuviera más calmada y fomentábamos el sentido de competición diciéndole mira Roxana te va ganando, no te quieres divertir como ella y era solo así como se animaba  y lográbamos que participara un  poco, en cuanto a los aprendizajes fueron similares a los de forma es decir citlaly mostro menos aprendizaje que Roxana debido a la misma razón a su falta de cooperación y entusiasmo en las actividades , con Emily de 6 años de igual manera se trabajó con mucho éxito ella siempre se mostró cooperativa y me agradaba mucho ver que las actividades que escogimos para ella eran   entusiastas y adecuadas ya que de igual manera lográbamos brindarle los aprendizajes esperados, en la última actividad involucrábamos a todas las niñas y se trabajó muy bien fue en una de las únicas actividades donde citlaly trabajo un poco mejor  en esta actividad  se metieron muchos instrumentos se utilizó la estimación  y se registraron resultados  ya que Como lo dice Sperri Smith “Los niños trabajan con el concepto de medición hablando, utilizando las herramientas de medición, adivinando o haciendo conjeturas, registrando los resultados” , las niñas trabajaron muy bien se entusiasmaron y pues se logró lo que quería ya que ellas fueron muy cooperativas tuvieron conocimientos de la báscula la manipularon bien lo mismo paso con el metro la regla y el reloj, estas actividades resultaron muy gratificantes para mí y me han dejado experiencias muy bonitas y a la ves un poco tristes ya que  el que citlaly no haya alcanzado de manera eficaz los aprendizajes esperados no representa un acto de triunfo, pero eso también nos ayuda a darnos cuenta que nos falta un poco más de preparación y me anima a seguir aprendiendo para que eso no vuelva a pasar y a que tenemos que aprender a construir más estrategias óptimas para el aprendizaje de los niños ya que como lo dice   Brousseau : “para todo conocimiento (matemático es  posible construir una situación fundamental que puede comunicarse sin apelar a dicho conocimiento y para la cual éste determinada la estrategia óptima (1988)”,  para terminar  solo queda decir que este tipo de actividades  al igual que la del concurso de materiales la cual también fue una experiencia muy bonita  y nueva  nos sirve mucho a las alumnas normalistas ya que nos da muchas oportunidades, el sentido de responsabilidad y compromiso  y aparte en cierta forma a la hora de dar resultados y sustentar hace que nos apropiemos de la teoría de manera más concreta y pues sobre todo nos da muchos aprendizaje que solo se adquieren con la experiencia que vamos  teniendo con los niños lo que nos sirve mucho para la mejora de nuestra formación.

Glogster

En el siguiente link se mostrara un glogster acerca de los Factores que influyen en el logro de aprendizajes esperados en preescolar el cual está realizado por las experiencias obtenidas de las actividades aplicadas a los niños de seguimiento.


informe de las actividades de medida y tiempo

A continuación se observara  el ultimo informe  de las actividades de medida y de tiempo


INFORME DE LAS DOS ÚLTIMAS ACTIVIDADES  APLICADAS A LOS NIÑOS DE SEGUIMIENTO

El día 1ro. de Junio del año en curso se aplicó una actividad a las niñas Roxana de 4 años y Citlaly de 5, abarcando el aspecto de forma espacio y medida,  la planeación de la actividad surgió con la cuestión de cómo abarcar el tema de medida cuando aún no concluimos el de forma.  Para ello realizamos una planeación en la cual se pudiesen ver involucradas las dos, la situación didáctica “Encontremos el tesoro” incluyó ambos temas, las niñas debían utilizar medidas no convencionales para llegar a un punto específico en el área, para obtener sus saberes previos se le cuestionó a Roxana que ocupaba ella para medir, la niña en un principio no se mostraba muy abierta en sus respuestas así que tuvimos que generar algo de confianza en ella, como el decirle que teníamos una sorpresa para ella si jugaba con nosotras, poco a poco la niñas respondió a nuestras preguntas, las cuales se le hicieron de una manera casual para que no siéntese que la interrogamos, algunos cuestionamientos que le realizamos fueron que si conocía la regla, si alguna vez la había utilizado, si media distancias con sus pasos, con sus manos  o sus pies o alguna otra parte de su cuerpo a lo que ella contestaba sí o no.
En cuanto a la segunda niña Cilaly tuvimos algunas dificultades para que participara en la actividad ya que esta fue aplicada en la unidad deportiva y existe un área de juegos que desde un principio llamo la atención de las niñas y Citlaly no quería dejar de jugar en ellos. Tuvimos que idear una estrategia para que ella se integrara y esta fue que hicimos mención a las dos que tenían que encontrar un tesoro y que veríamos quién sería la primera en encontrarlo esto fue a manera de concurso para que despertara el interés por parte de las niñas, de esa manera ellas se concentraron en revisar el mapa y encontrar los puntos para llegar al tesoro al verlos los señalaron, los puntos eran un arbolito con hojas color verdes y cafés, en cuanto lo ubicaron se les dio a elegir una medida no convencional (estos eran los pies de diferentes tamaños como chico, mediano y grande, al igual que las manos, y los brazos de cartoncillo) Roxana eligió la mano más grande y Citlaly el pie más grande de esta manera con nuestra ayuda comenzaron a contar desde el punto de partida hasta el primer punto (el arbolito de hojas verdes y cafés). Una vez que llegaron se les dio a elegir otra medida no convencional Roxana eligió el pie mediano y Citlaly la mano más grande aún así Roxana fue la primera en llegar al tesoro ya que tuvo la ventaja de iniciar poco antes pues Citlaly al momento de iniciar la actividad no tuvo mucho interés como ya se había mencionado antes.
Paulatinamente los niños preescolares se gradúan en unidades arbitrarias como la medición con manos, pies, contenedores, cucharones o peso de las bolsas de arroz. Generalmente jardín de niños y primer grado. (Sperry Smith)
Piaget considera que las nociones de medida se construyen “solo a partir de haber logrado la comprensión del número” las niñas en sí no lograron medir aún teniendo medidas no convencionales pues solo sabían contar hasta el número 15 y las medidas se repitieron hasta después del número 30. 33 pies para llegar a un primer punto 32 manos para llegar al tesoro por ello no comprendían realmente la distancia de un punto y otro.
Al llegar al tesoro dentro de este se encontraban dulces y figuras geométricas lo que ellas tenían que hacer era describir cada una de las figuras, por su forma, sus lados, y por su color, que este último no tiene que ver mucho en el tema, pero igual como son dos niñas pequeñas quisimos agregarlo para saber que tanto sabían de los colores,  este ejercicio fue a manera de conclusión y cierre en el tema de forma que es lo que se vino trabajando con ellas. Cada que lograban describir una figura acertadamente como recompensa la niña podía tomar el dulce que quisiera que se encontrara dentro del tesoro.
Roxana: En la segunda actividad se le observó un  mejoramiento notorio ya que  se percató que pudo mencionar el nombre de todas las figuras pues varias se repetían en diferentes colores esto no fue un impedimento para ella, después se le dijo a la niña a que reconociera y contara  los lados, ella comparó de manera adecuada lo  que  son los lados del rectángulo, triangulo y cuadrado por consiguiente cuando se le volvía a cuestionar y ella solo decía el número de lados y no se limitaba a enumerar y si sabia identificar  correctamente por las características  mencionadas esto puede deberse a que a pesar de que no va al jardín recibe apoyo por parte de su mamá y a que las actividades que hemos aplicado si han resultado interesantes para ella  ya que al momento de participar lo hace con emoción.
Citlaly: aún tenía que limitarse a observar mucho que figuras eran  y en ocasiones cuando no la recordaba, era necesario que se les dieran pistas  para que las recordara, en cuanto a su conocimiento sobre los lados de cada figura en ocasiones si los decía bien y en otras  ella los tenía que contar.
Como bien se puede observar ambas niñas lograron los aprendizajes esperados solo que el aprendizaje es más notorio en Roxana pues la niña no asiste aún al jardín de niños y avanzó mucho en las actividades, al final fue la que mejor logró describir cada figura geométrica que se le mostraba. Por tal se podría decir que ambas niñas pueden ubicarse en el 2do. Nivel del modelo Van Hiele, De análisis el cual indica que el niño se percata de que las figuras tienen propiedades y puede describir las partes que le integran y enunciar sus propiedades de manera informal. Deducen otras propiedades y realizan clasificaciones lógicas de figuras basándose en sus elementos o propiedades.
Con respecto a la actividad que se realizó a Emily  podemos decir que al igual que todas las demás fue un éxito esta actividad se llamaba  “¿Cuál es el mejor camino?”    y fue aplicada  el día domingo 2 de junio   Emily   se encuentra en un  nivel más avanzado que las niñas, ya que era la que más años tiene dentro del jardín de niños, y es la más participativa, pues no le da pena hablar a diferencia de las niñas nombradas anteriormente  por lo que con ella se  hace una secuencia didáctica diferente  la cual se mencionó anteriormente con esta  actividad se le quiso introducir al uso de medidas convencionales (en este caso la regla) pero igual se utilizaron medidas no convencionales tal es el caso del listón esto era para el análisis de cuál era el camino más largo o más corto  basándonos de la medidas obtenidas  de cada camino para esta actividad  se realizó que fue  una maqueta  de una serie de casas  y caminos  a la niña le resultó muy atractiva la maqueta ya que se emocionó, una de las cosas que le paso a Emily  fue de que  al principio se confundió un poco cuando  antes de medir le preguntamos qué camino era más corto  ya que como vio más corto el que tenía curvas que el recto y ya midiéndolo se dio cuenta que era más largo el de curvas por lo que aquí se comprueba lo que dice Piaget “ de que los niños son fácilmente engañados por las apariencias”.
Al momento de que ella estaba colocando los listones para medir los caminos que no se podían medir con la regla,  a ella sola le surgió la idea de  detener el listón con  plastilina, como fue el caso del camino en zigzag, en cada esquina utilizó plastilina para poderlo medir con mayor precisión (la plastilina estaba en la maqueta sosteniendo a unos arbolitos). Como ella no se sabía los números hasta el  30 necesitó nuestra ayuda  y la estrategia que ella ocupo fue la de anotar los centímetros que media cada camino   una vez que termino  de medirlos Emily logro identificar de manera adecuada cual era el camino más corto y cuál era el más largo  a pesar de que tenían distintas formas como curvas y otros estaban en zig - zag   también se logró que ella  manejara bien la regla,  que identificará los centímetros  por lo que  nosotras podemos  decir que realizo de manera adecuada el principio general de medición el cual según el autor Sperry Smith  son : “  El método para medir cantidades físicas es el siguiente: 1.Elegir una unidad apropiada.. 2. Utilizar la unidad para cubrir el objeto, sin espacios o huecos. 3. Contar las unidades.”,   una vez acabada la actividad como a la niña le emociono mucho quería  seguir jugando. Podemos comentar que una de las cosas que llamo la atención de la niña fue el material ya que fue llamativo, y pues la actividad no era muy difícil, pudo concluir con la actividad exitosamente.

El día 15 de Junio, se aplicó a las tres niñas la última actividad en el tema de peso y medida, que recibió por nombre “¿Qué puedo medir y con qué?”  La actividad se planeó para aplicar en una edad de 4-6 años, y de esta manera hubiese la participación de las tres niñas, esto debido a que las actividades eran de distinto grado de dificultad donde se vería aplicado lo que es el peso, la medida y el tiempo y uno de los requisitos era la participación y ayuda mutua entre las tres niñas. Para comenzar con la actividad introducimos en una caja forrada de color amarillo varios objetos de distintos colores, formas, peso y tamaño y después se les pidió a las niñas nos describieran como eran esos objetos, en cuanto a su forma y para el tamaño se compararon con  otros para decirnos cual era más grande,  después de ello se les preguntó cuál de ellos creían que pesaban más una vez que lo hicieron para comprobarlo se les dio para que lo tomasen y sintieran cual pesaba más. Después de ello se les pidió a las tres niñas escogieran tres objetos de su agrado de la caja y lo trajeran consigo, aquí se observo como todas las niñas tomaron los objetos incluso sin enumerarlos a excepción de Roxana la niña las pequeña que se tomo tiempo para enumerar los objetos y luego comprobó si eran tres, una vez que todas las niñas tomaros sus objetos las sacamos al patio de la casa y les dijimos que acomodaran los tres objetos del más pequeño al más grande, en forma de fila, esto se hizo a manera de concurso la que lo hiciera primero ganaría esto para motivarlas a hacer la actividad, aquí se observó que Emily y Citlaly acomodaron los objetos de manera correcta y en cuanto a Roxana no lo hizo así, sin embargo al momento de preguntarles a las niñas una por una cual era el grande, el mediano y el chico, todas apuntaron correctamente al objeto, inclusive Roxana, aquí nos dimos cuenta que a pesar de que ella no ordenó los objetos del más chico al más grande no fue porque no supiera cuáles eran sus tamaños sino porque no entendió bien la instrucción a diferencia de las demás niñas.
La siguiente actividad fue la del tiempo para ello las niñas entraron a la casa y se les mostró distintos relojes que se les había llevado, los cuales eran para la muñeca y de pared,  y se les preguntó qué eran, cómo se usaban, para qué servían, cuál de ellos podía colgarse en la pared, y en que se parecían,  a cada niña se le realizó una pregunta diferente, sus respuestas era muy seguras, inclusive Citlaly al momento de preguntarle para que servía el reloj, nos respondió: - Pues para saber la hora, tontita. Cuando se le pregunto a Emily en que se parecían ambos relojes nos respondió que en los números, en las manecillas y que tenían letras (las cuales eran donde decía la marca del reloj).
Después de la actividad se sacaría a las niñas de nuevo al patio y se les preguntó cuál de las tres primas era las mas alta a lo que respondieron que Emily y cuando se les preguntó por la más baja respondieron que Roxana,  durante la realización de esta actividad Citlaly no mostró interés en las actividades  y se aisló,  en lo que fuimos a convencerla las demás niñas se distrajeron así que decidimos concentrarnos en Emily y Roxana, les dijimos si querían que las midiéramos y nos dijeron  que si, para esto les mostramos, una regla y una cinta métrica y les preguntamos cual de ellas, debíamos utilizar para poder medir personas una vez que nos señalaron la cinta métrica procesamos a medirlas, después de ello les mostramos las cinta métrica y la regla y les preguntamos cómo se llamaban y para que servían, Emily nos respondió que una era la cinta métrica pero no recordaba el nombre de la otra, Roxana fue la que dijo que era una regla, ambas nos respondieron que servían para medir, pero la chica era para medir cosas chicas como libros y la otra era para medir cosas grandes como personas, luego de ello se les mostró tres reglas que habían sido elaboradas de carton y se les dijo que las pegaríamos pero debía ser en el orden de los número, aquí Emily las ordenó y no tuvo problemas para saber el orden de la enumeración Roxy, tuvo problemas pues ella solo supo ordenar hasta el número diez más sin embargo estuvo atenta a como los acomodó Emily y ambas los juntaron con cinta, una vez que terminaron se les dijo que a eso se le llamaba metro y también servía para medir, entonces se les dijo tomaran un pedazo de periódico y lo sumergieran en el traste con agua que estaba en la mesa, aquí fue cuando Citlaly le dio curiosidad la actividad y quiso jugar en ese momento las tres tenían sus bolas de periódico mojadas en sus manos y se les pidió la lanzaron lo más lejos que pudieran, una vez que las lanzaron se les preguntó cual había caído más lejos y cual más cerca, las respuestas de las niñas fue acertada el más lejos fue el de Roxana y el más cerca el de Emily, posteriormente les dijimos que para saber cual había quedado mas lejos con exactitud usaríamos el metro que habían hecho, se comenzó con Emily, se le dijo pusiera el metro en donde estaba parada cuando lanzó el periódico y cada que se ponía el metro, pondría el dedo para marcar y después de ello se le pidió contara cuantos metros llevaba, ella no mostró dificultades para enumerar cada metro, de igual forma se hizo con Citlaly ella tampoco mostró dificultades al momento de enumerar y medir con el metro, en cuanto a Roxana ella no mostró dificultades para medir y entendió la dinámica de cómo usar el metro más sin embargo mostró dificultades al momento de enumerar pues se le olvidaba los números.
En la siguiente actividad se vería peso para esto realizamos una balanza con ayuda de un gancho de ropa, dos platos de unicel y un listón, y de les motró una bascula, la cual era de las que comúnmente se usa para pesar objetos de 15 kg. máximo, parecía un reloj ya que tenia una manecilla que apuntaba un número indicando el peso, se les dijo a las niñas si sabia que eran ambas cosas, no respondieron que  una era un reloj, pero les aclaramos que no lo era que se parecían, pero esta nos servía para pesar, y se les dio una muestra de cómo se utilizaba, se les dijo que esa se llamaba báscula y la otra balanza y ambas servían para pesar, pero con la balanza se podían pesar dos objetos y con la báscula solo  una, después  se les mostró a las niñas varios objetos de los que ya habían tomado anteriormente de la caja y se les preguntó cuál  de ellos creían que pesaba mas más y menos  y después se comprobó pesándolos, la mayoría de las veces acertaron.
Para la última actividad  se le entregó a cada niña un objeto, una regla, unos colores y una hoja de papel blanca, se les dijo que medirían con la regla en objeto, Emily tomó su regla, la sostuvo a lado del objeto y con ayuda de un color indico hasta que número llegaba, las otras niñas vieron como lo hizo y lo hicieron de la misma forma, una vez que midieron se les preguntó cuánto media el objeto que les había tocado y cada una respondió correctamente,  después de eso se les indico dibujaran en la hoja el objeto y a un lado pusieran el número que media, todas escribieron correctamente el número a excepción de Roxana que batallo un poco en escribir el número seis hasta que se le dijo se fijara bien como se escribía y después de unos intentos lo logró.
Con estas actividad se finalizó el trabajo con las niñas, ambas mostraron un avance en cuanto a lo que sabían y a lo que no, cuando se les preguntó como retroalimentación nos mencionaran que objetos servían para pesar, nos respondieron los dos instrumentos que se vieron, de igual forma con el tiempo y la medida,  Roxana seria la niña que va un poco más atrasada pero el reconocer que ella aun no ha entrado al preescolar quiere decir que está con mas conocimiento que cualquier niño en su caso, y el que haya estado abierta en cuanto a las actividades lo hace mejor, Citlaly aunque a veces se muestra reacia a las actividades cuando de verdad pone atención sabe dar las respuestas, solo hace falta animarla, en cuanto a Emily es una niña nada temerosa y le gusta dar mucho las respuesta las cuales casi siempre son correctas, es la más adelantada aunque hay ciertas cosas que se le olvidan, pero  si se le deja en claro ciertas ideas comprende bien.
En las actividades donde las niñas tuvieron que medi distancias con el metro se ve implicado lo que nos menciona Ma. Elena y Ma. Tersa Gonzáles Cuberes en su libro  “Encuentros cercanos con las matemáticas” donde nos menciona que cuando el niño aprende a medir surge controversia al momento de enseñársele, pues hay dos líneas las cuales son la Piagetiana y la Vigtskiana, pues la primera dice que las nociones de medida se construyen a partir de haber logrado la comprensión del número y la segunda a partir  de procesos propios de medición, esto se observo en el caso de Roxana, ya que ella aun no conoce completamente los números y no se sabía completamente  el orden de estos, pero al momento de indicarle como debía medir con el metro  ella ocupó correctamente la medida. 
De igual forma algo que se vio aplicable en la actividad fue el método general que no menciona Susan Sperry Smith en su libro la medición ya que nos dice que un paso esencial para llevar a los niños al proceso de medición los niños es que adivinen y lo estimen los resultados.
De igual forma se observó que en la actividad las niñas se dejaban guiar por las apariencias de los tamaños de las cosas y creían que pesaban mas, cuando en realidad a veces se equivocaban, esto se nos hace mención en el mismo libro antes mencionado de Smith Dificultades en el proceso de medición donde retoma lo que  Piaget demostró acerca de que los niños son fácilmente engañados por las apariencias, algo debe pesar más si es más grande en tamaño.









IMÁGENES DE LAS ACTIVIDADES














 
          
 
 

 
       

secuencia didáctica de tiempo y medida

Aquí se muestra la ultima secuencia didáctica  aplicada a los niños de seguimiento  el di 15 de junio donde se ven los temas de medida y de tiempo, cabe informar que esta actividad  fue aplicada a las 3 niñas de seguimiento por igual

 Situación didáctica: ¿Qué puedo medir y con qué?
Campo formativo: Pensamiento matemático
Aspecto: Forma espacio y medida
Competencia: Utiliza unidades no convencionales para resolver problemas que implican medir magnitudes de longitud, capacidad, peso y tiempo, e identifica para que sirven algunos instrumentos de medición.
Aprendizaje esperado:
·         Ordena, de manera creciente y decreciente, objetos por tamaño, capacidad, y peso.
·         Elige y argumenta que conviene usar como instrumento para comparar magnitudes y saber cual objeto mide o pesa más.
·         Establece relaciones temporales al explicar secuencias de actividades de su vida cotidiana y al reconstruir procesos en los que participó, y utiliza términos como: antes, después, al final, ayer, mañana.
Propósito: Desarrollar en el niño la identificación de diferentes instrumentos de medición que le servirán para comparar magnitudes. De igual forma el poder comprobar sus conocimientos previos, a través de la interacción y la  manipulación, que los llevará a cimentar aprendizajes sobre la capacidad, peso, y relaciones temporales.
Edad: 4-6 años
Tiempo: 1hora y media
Material:
·                    Variedad de objetos
·                    Diversos relojes (despertador, de pared, de pulso)  
·                    Metro
·                    Báscula
·                    Hojas para registros de resultados
·                    Rectángulos delgados de cartulina con números, (simulando una regla) para la elaboración del metro
·                    Resistol o cinta adhesiva  
·                    4 pliegos de Periódico
·                    1 Tina pequeña
·                    1 lt de Agua
·         1 m. de Estambre o mecate
·         1 Gancho de ropa
·         1 Regla
·         2 Platos de unicel

Inicio:
Comentar que el día de hoy conoceremos diversos objetos que son de diferente tamaño, color, forma etc. Mostrarles los objetos a los niños y posteriormente solicitares que mencionen características de esos objeto por ejemplo ¿Cómo es? ¿Qué forma tiene? ¿A qué se parecen? ¿De qué tamaño es? Etc.
Desarrollo:
Colocar en una caja varios objetos (piedras, hojas, juguetes pequeños, etc), invitar al niño que pase y tome 3 objetos sin importar su clase, y al conteo de 1, 2, 3, formaran sus objetos del más pequeño al más grande  el niño que termine más rápido dirá basta.
Mostrar diversos tipos de reloj, preguntarles si saben ¿Cómo se usan? ¿Cuál puede colgarse en la pared? ¿Cuál suena a la hora que debo levantarme? Etc. Se repite la primera actividad pero ahora con ayuda del reloj explicándoles a los niños que con él, podremos medir el tiempo y así saber quién lo  hizo más rápido.
Cuestionar si alguna vez han ido al mercado, si han visto a las señoras pesando las verduras, o frutas preguntar ¿Qué utilizó para medirlos? Y como le hizo.  Mostrarles un metro y una báscula y cuestionar ¿para qué creen que sirvan? Luego se les hablara de sus características ¿cómo son? ¿Para qué sirven? ¿Cómo se usan? etc. después de haber escuchado sus participaciones. Permitirles que manipulen estos objetos de medición, a través de pesar y medir objetos que encuentren a su alrededor, registrando en una hoja los resultados a su manera.
Posteriormente elaborar un metro por  ternas, dándoles indicaciones de cómo hacerlo, pidiéndoles que observen bien cual línea va primero  consecutivamente.   Salir al patio y jugar quien lanza más lejos, la niña de 6 años será el árbitro y verificará las medidas de sus lanzamientos con ayuda del metro, darles un pedazo de periódico el cual sumergirán en una tina con agua para posteriormente lanzarlo lo más lejos que pueda, enseguida con ayuda del metro comprobaremos quien lo lanzo más lejos, los árbitros se rotaran para que todos tengan el aprendizaje.
Mostrar nuevamente la bascula y volver a preguntar ¿para qué me sirve este instrumento de medición? ¿Qué puedo pesar con él?, decirles que elaboraremos una balanza, más sencilla con ayuda de los platos, el gancho de ropa y el estambre esta nos ayudara a distinguir que objeto pesa más. Ya elaborada la balanza, elegiremos objetos que se llevaron y se colocaran en la balanza, invitarlos a que hagan sus hipótesis sobre cual objeto creen que sea más pesado y ¿por qué?
Tomar la regla y cuestionarlos sobre ¿para qué sirve? ¿En que la puedo usar?, ¿Es igual que el metro? etc., posteriormente se les dará a cada niña 2 de los objetos utilizados anteriormente y se les dirá que los medirán con ayuda de la regla, mostrándoles primero un ejemplo sobre de qué manera lo harán, una vez que midieron, se registraran sus resultados, al final comprobaremos los resultados de las niñas, midiendo nosotras los objetos y se dará a conocer que niña lo hizo más correcto. De la misma forma se cuestionará con que instrumento pueden medirse ellas si alguna vez lo han hecho, y quién de las tres es la más alta y quién la más pequeña y a manera de comprobación se medirán con el instrumento que hayan mencionado (el correcto es el metro y se tratará de que respondan esto) se conocerán los resultados y se formarán las niñas de la más chica a la más alta para que observen sus altura.

Cierre:

Una vez finalizadas todas las actividades, se les preguntará a las niñas que juego les gusto más y porque, que cosas se vieron para medir y pesar, Comentaremos todo lo aprendido, los usos de los instrumentos de medición, se les preguntará a las niñas ¿cuál es el que ya conocían o cual es el que tienen en casa? Y por último se les preguntará en que se parecen y diferencian todos los instrumentos de medición que se ocuparon (metro, regla, báscula y reloj).